

CLARAty

Mechanism Model Software Design
Document

Revision: 0.9d (Draft)
Date: March 28, 2005

Prepared By: Document Custodian:
Issa A.D. Nesnas Issa A.D. Nesnas
Won S. Kim
Hari Das Nayar
Antonio Diaz-Calderon

Contributors
Anne Wright (Ames Research Center)
Raymond Cipra (Purdue University)
Max Bajracharya (JPL)
Daniel Clouse (JPL)

Paper copies of this document may not be current and should not be relied on for official
purposes. The current version is on the CLARAty website at http://claraty.jpl.nasa.gov under
Software/Packages/Mobility and Manipulation

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109-8099

CLARAty Document - Mechanism Model Requirements 3/28/2005

2

This Page Intentionally Left Blank

CLARAty Document - Mechanism Model Requirements 3/28/2005

3

CLARAty Mechanism Model Requirements and Design Document

Signature Sheet

Approval

Mr. Clay Kunz – CLARAty Center Lead, NASA Ames Research Center Date

Dr. Stergios Roumeliotis – CLARAty Center Lead, University of Minnesota Date

Dr. Reid Simmons – CLARAty Center Lead, Carnegie Mellon Date

Dr. Antonio Diaz Calderon – Jet Propulsion Laboratory Date

Dr. Hari Das Nayar – OphirTech Date

Dr. Won S. Kim – Activity Lead, Jet Propulsion Laboratory Date

Dr. Issa A.D. Nesnas – CLARAty Task Manager, Jet Propulsion Laboratory Date

 Revision: 0.9d Draft
 Date: March 28, 2005

CLARAty Document - Mechanism Model Requirements 3/28/2005

4

Table of Contents
1. Introduction ...6
2. General Requirements ..9
3. Mechanism Types ...9
4. Mechanism Model Software Elements..11
5. Coordinate Frames ...17
6. Model Data Input...18
7. Kinematic Algorithms ..19
8. Constraint Management..20
9. Software Interfaces ...22
10. Model Classes for Manipulators and Locomotors ...23
11. Control Classes for Manipulators and Locomotors ...23
12. Examples of Model Instantiation ...24
13. Performance..21
14. Future Additions ..21
15. Appendix A: Document Definition Example ..25
16. Appendix B: Comparison between Craig’s D-H and Paul’s D-H parameters33

CLARAty Document - Mechanism Model Requirements 3/28/2005

5

Revision History

Revision Date Description Author
0.1 02/02/04 Initial document to capture meeting notes W. S. Kim
0.2 02/26/04 Added provisions for legged mechanisms; collision

modeling; and parameter files
W.S. Kim

0.3 03/01/04 Revised collision models and added kinematic
model methods

W.S. Kim

0.4 04/26/04 Restructured the document into functional and
interface reqs; added figures

W.S. Kim

0.5 05/14/04 Added definitions for body and joint; added
coordinate frames; usage models; and captured
unresolved items for further discussion

I.A. Nesnas

0.6 06/09/04 Restructured document; made major additions to all
sections; added modeling info from A. Diaz and
design diagrams from H. Nayar and W. S. Kim

I.A. Nesnas

0.7 06/23/04 Added introduction, body tree section, closed
chains, body tree, and bounding shape diagrams;
updated usage model section

I.A. Nesnas

0.8 06/25/04 Added body joint relationship diagram; cleaned up
and reorganized some sections

I.A. Nesnas

0.9 10/08/04 Added constraint management section from R. Cipra
and reviewed several sections

H. Nayar

0.9a 12/30/04 Prepared document for final review; added cover
pages, redid figures; added table of contents, added
missing figures from version 0.9; cleaned up styles
and updates sections

I.A. Nesnas

0.9b 3/1/05 Updated mechanism model class hierarchy and
mechanism model interface figures

I.A. Nesnas

0.9c 3/1/05 Added Appendix A; reviewed DTD; and reviewed
document

I.A. Nesnas

0.9d 3/25/05 Incorporated changes for co-authors: Won, Hari,
Antonio. Added comparison section from Hari

I.A. Nesnas

CLARAty Document - Mechanism Model Requirements 3/28/2005

6

1. Introduction

What is proposed?
A unified approach for modeling mechanical properties of a robotic system for use by the
CLARAty1 on-board software. The implementation of these requirements will provide CLARAty
with a more generic infrastructure for mechanism modeling. The modeling software covers
mobility mechanisms, robotic arms, rover masts, mechanical legs, and so on. The modeling
software will provide the necessary information for real-time computation of kinematics,
dynamics, and collision prediction.

Why is it proposed?
 A unified modeling approach has the following advantages:

 Provides centralized storage for managing model information. This includes creation,
deletion, update, extension and reconfiguration of the mechanical models.

 Ensures consistency of the model information for use by multiple algorithms. This will
simplify the integration of algorithms into the software architecture.

 Reduces duplication in model representation between rover mobility and manipulation
software.

 Enables the development of generic algorithms for forward, inverse, and differential
kinematics. In the absence of specialized versions, the generic algorithms provide out-of-
the-box functionality.

 Supports specific implementations to override generic algorithms whenever appropriate for
optimal performance.

 Enables the verification of specialized kinematics algorithms against their generic
counterparts.

What is contained in this document?
This document contains software requirements for developing a unified mechanical model
representation. It also contains requirements for algorithms and describes the interaction of the
models with the rest of the on-board robotic software.

This document is divided into two parts. Part I covers the mechanical model requirements and
design. It is divided into several sections covering general requirements, mechanical models
and their components, relationships between these components, and user input for generating
the models. Part II covers the integration of these models with the rest of the on-board control
software. The appendices include sample model files and various parameter representations.

This document assumes familiarity with robotic terminology and basic knowledge of software
development and object-oriented concepts. In this document, the term “mechanism” refers to
any mechanical system and does not imply a closed loop mechanical chain.

1 CLARAty: Coupled Layer Architecture for Robotic Autonomy

CLARAty Document - Mechanism Model Requirements 3/28/2005

7

Related Work
The Mechanism Model package has similarities to and differences from other kinematics
modeling software packages. A review and comparison of Mechanical Model with three other
packages: (1) DARTS/Dshell, (2) Open Robot Control Software Kinematics (ORCOS) package
and (3) Operational Software Components for Advanced Robotics (OSCAR) is given below.

DARTS/Dshell
Developer:
Abhi Jain and DARTS/Dshell group (JPL)
Summary:
DARTS/Dshell is a high-fidelity dynamics simulator that models the motion of flexible multi-body
systems under internal and external interactions. It has been used to model robotic systems
and spacecraft. Applications include hardware-in-the-loop testing and off-line simulations.

The development of DARTS/Dshell began in the early 1990s. The current version is
implemented in C++ and runs under UNIX/Linux environments. Real-time versions for
hardware-in-the-loop testing have been ported to VxWorks. The use of DARTS/Dshell as an
application is actively supported at JPL.
Comparison:
DARTS/Dshell and CLARAty share many similar mathematical utilities like vector, matrix,
quaternion and transform classes. The modeling approach and software architecture in
Mechanism Model is based on the DARTS/Dshell approach. The primary differences between
Mechanism Model in CLARAty and DARTS/Dshell are:

 The modeling in DARTS/Dshell is geared for high fidelity simulations while the
Mechanism Modeling of CLARAty is geared for real-time high-frequency control and
planning. The latter also supports overriding of generalized solutions with specialized
ones.

 DARTS/Dshell uses much more detailed models (body flexibility, actuator and
transmission modeling, etc.) which are needed for high-fidelity simulations.

 Simulation software and control software solve complementary problems (e.g. simulation
software solves the forward dynamics while controls software solves the inverse
dynamics).

 DARTS/Dshell makes extensive use of recursive algorithms while Mechanism Model will
use corresponding iterative algorithms, which are more amenable for on-board flight
implementations. Mechanism Model will allow limited use of recursive approaches in the
future.

Open Robot Control Software (OROCOS) Kinematics Package
Developer:
Herman Bruyninckx (Katholieke Universiteit – KU, Leuven, Belgium)
Anthony Mallet (Laboratory for Analysis and Architecture of Systems - CNRS/LAAS, France)
Henrik Christensen (Kungl Tekniska Högskolan - KTH, Sweden)
Other collaborators
Summary:
The original goal of the OROCOS effort was to develop open source software for robotics
applications. It has since branched into two separate developments:

CLARAty Document - Mechanism Model Requirements 3/28/2005

8

 Open Real-time Control Services for real-time control applications
 Open Robot Control Software provides class libraries and a framework for robot

applications.

OROCOS’s objectives are similar to CLARAty’s. The Kinematics Package in OROCOS has
similarities to Mechanism Model. However, the Kinematics Package is at the design concept
stage and no software has been developed. It is intended to address more general mechanical
systems and not be restricted to tree-topology systems. While the objectives of the Kinematics
Package have been documented, the approach to be used for its implementation has yet to be
clearly defined.

The development of OROCOS began in 2001 as a collaboration between KU Lueven, Belgium,
CNRS/LAAS, France and KTH, Sweden. It was funded by the European Union between 2001
and 2003. The work continues as an open source project primarily lead by Herman Bruyninckx.
The OROCOS development environment uses C++ as its programming language and Linux and
RTAI (a realtime extension to Linux) as its operating system. While OROCOS can be more
generally applied, it has had a focus on industrial robotics. The future of the Kinematics
Package in OROCOS is unclear because of the open source nature of the development and
lack of any funding.
Comparison:
The OROCOS Kinematics package currently exists as a set of objectives without a detail
description of its approach or implementation.

Operational Software Components for Advanced Robots (OSCAR)
Developer:
Del Tesar’s Robotics Research Group, University of Texas
Summary:
OSCAR provides utilities in the form of libraries for performing computations needed in analysis,
control or simulation of manipulators. In addition to math utilities, it contains algorithms for
performing generic forward and inverse kinematics, motion planning and dynamics. OSCAR
offers many alternative options in its operations. For example, for motion planning, trajectories
can be generated using trapezoidal, spline or motion blending algorithms. OSCAR currently
appears to allow only models of serial-chain manipulators. OSCAR’s primary application is
robotics education.

OSCAR is a set of C++ libraries built in the Windows environment using Visual C++. The
libraries are used by linking them to an application that is also being developed in Visual C++
under Windows. It was originally developed in the mid-1990s and appears to be actively
supported.

Comparison:
OSCAR provides generic software utilities for robot arms (serial-chain manipulators) while
Mechanical Model models more general kinematics systems. OSCAR is used exclusively in PC
Windows environments and interfaces to application software that is developed in Visual C++.

CLARAty Document - Mechanism Model Requirements 3/28/2005

9

Part I: Mechanism Model

2. General Requirements

2.1. The software shall separate mechanism models from mechanism control. This
allows client software to use and test the kinematics and dynamics of the
mechanisms independent of the hardware.

2.2. The software shall support the following computations for the mechanism model:
2.2.1. Kinematics computations:

2.2.1.1. Forward, inverse, and differential kinematics
2.2.2. Quasi-static computations of forces and torques considering:

2.2.2.1. Joint flexibility (stiffness)
2.2.2.2. Gravity force and other applied forces
2.2.2.3. Gravity deflection
2.2.2.4. Environmental contact constraints (position, force, torque,

and stiffness)
2.2.3. Resolution of multiple simultaneous kinematics constraints
2.2.4. Collision detection
2.2.5. Not full dynamics computations (inertial forces). The software shall not

support dynamic computations in the initial implementation. However,
models shall support future extensions for dynamics computations.

2.3. The software shall allow over-riding of generic algorithms with specialized algorithms
for specific kinematics systems.

3. Mechanism Types

3.1. The mechanism model software shall handle multi-body mechanisms which include:

3.1.1. Serial manipulators:

Multi-degree of freedom robotic arms, masts, and legs (e.g., a 5-dof arm
with a turret gripper carrying multiple instruments)

3.1.2. Simple closed-chain mechanisms:
Four- and six-bar planar mechanisms

3.1.3. Wheeled locomotors:
Multi-wheeled mechanisms with different drive and steering
configurations. This includes fully-steerable, partially-steerable, and skid-
steerable mechanisms (e.g. Rocky 8’s six-wheel drive six-wheel steering
rocker bogie mechanism, Rocky 7’s all-wheel drive front wheel steering
mechanism, SRR’s2 four-wheel rocker mechanism, and ATRV’s3 non-
steerable mechanism)

3.1.4. Legged locomotors:
Multiple legs attached to a body (e.g. LEMUR4 and Athlete robots).
Legged locomotors that require dynamics computation will currently not
be supported (e.g. two-legged humanoid robots)

2 SRR: Sample Return Rover built by JPL
3 ATRV: All Terrain Response Vehicle from IRobot
4 LEMUR: Limbed Excursion Mobile Utility Robot built by JPL

CLARAty Document - Mechanism Model Requirements 3/28/2005

10

3.1.5. Composite mechanisms:
Any combination of the above types (e.g. a rover with a robotic arm; a
mobile robot with both wheels and legs)

3.2. The mechanism model software will not directly handle parallel and hybrid kinematic
structures. However, it shall be possible to model a simple parallel structure as a tree
topology by breaking the closed chain and solving for the closed chain using
constraints.

3.3. To verify the viability and fidelity of the mechanism model software package, the

following models shall be developed and tested with the new approach:
3.3.1. Rocky8’s two degree-of-freedom (DOF) fixed mast
3.3.2. MER’s 5-DOF robotic arm
3.3.3. Moonrise’s 4-DOF robotic arm for digging operations
3.3.4. FIDO’s rocker-bogie fully steerable wheeled locomotor
3.3.5. LEMUR or Athlete’s legged mechanism
3.3.6. Four-bar planar mechanism

CLARAty Document - Mechanism Model Requirements 3/28/2005

11

Body4 Body5

Body Tree

Body0

Body2 Body3 Body1

Ground_Body

4. Mechanism Model Design
4.1. The software shall capture the mechanism and its associated coordinate frame

transformations in a tree topology as shown in Figure 1. We shall represent
mechanisms using open-loop chains. Using a tree topology considerably simplifies
the software infrastructure and enables both flexible and efficient processing.

4.2. The Mechanism_Model shall be the
top-level software object. The
Mechanism_Model class shall
provide the interface to the
mechanism model database for
creating, deleting, modifying,
querying, and performing kinematic
analysis. We shall use a generic
Tree class in the Mechanism_Model
to represent the mechanism
topology.

4.3. The mechanism tree shall consist of
a number of bodies connected to
one another via joints. A joint
connects a body to its parent body.
The body will be denoted by
ME_Body (short for mechanical
element body). The joint will be
denoted by ME_Joint (short for

Figure 2: Mechanism Model Body Tree

Bodyi+1 Bodyi-1

Bodyi
Jointi Jointi+1

to tip to base

Sensor

Frame

Bodyi+2

Jointi+2Reference
Frame

Inertial

root_body

F

Reference
Frame

Figure 1: Mechanism Model: bodies and joints

CLARAty Document - Mechanism Model Requirements 3/28/2005

12

mechanical element joint) (Figure 2).
4.4. Closed loop chains such as a four-bar mechanisms, for example, shall be handled as

an open loop chain with either a position constraint between two of its links or non-
linear joint constraints on the non-actuated joints (see Figure 3).

4.5. The mechanism model tree shall only store mechanical model information. It shall
not store any joint or state values. Mechanical model information includes fixed
(non-articulated) transformations5 and joint constants that do not depend on

5 Relationships between coordinate frames that do not move with respect to the body

Actuated

(a) Four-bar

Position
Constraint

(b) Four-bar mechanism modeled
with either (i) position constraint, or
(ii) with non-linear joint constraints

θ1

L1

L2

L3

L0

θ2(θ1)

θ3(θ1)

Non-linear
Joint

Constraint

Actuated

Figure 4: Handling fixed and articulated coordinate frame transformations

Body1
Reference Frame

Body1CG

Body1
Upper arm link

Rover
Reference
 Frame

Rover
CG

Camera
Frame

Body0
Rover

Joint1

Body2
Lower arm
link

Sensor
Mount
Frame

Camera
Mount
Frame

Body2CG

Articulated
Rotation

Body2
Reference
Frame

Fixed
Transform

Arm
Mount
Frame

Shoulder
 Yaw

Joint
2

Articulated
Translation

Figure 3: Handling closed loop chains

CLARAty Document - Mechanism Model Requirements 3/28/2005

13

articulation values (Figure 4). All articulation and state information shall be passed to
the mechanism model. Keeping the fixed transformations separated from the
articulated transformations (due to relative motion between bodies) allows us to
make the tree stateless.

4.6. The mechanism model application program interface (API) shall support inputs from
a vector of articulation values (e.g. a vector of joint angles/prismatic values) to
compute the articulated transformations.

4.7. The mechanism model tree shall support multiple clients simultaneously (i.e. the
mechanism model shall be multi-thread safe and re-entrant).

4.8. Position, velocity, and acceleration information relative to an inertial frame shall not
be stored in the mechanism model. If such information needs to be stored, it will be
cached in the algorithms that require and compute this information. This is important
because it will enable various states to be updated at different rates and enable the
use of parts of the tree at a time. It will also allow algorithms to use the mechanism
model tree to predict future states for any given input state. The trade that is made
here is the cost of re-computing derived states vs. making copies of mechanism
model for each client application and keeping all their internal state up to date.

4.9. There shall be a single inertial frame denoted by Ground_Body in a given deployment
of systems. Ground_Body is the root of the tree (for a single or even multiple robots).

4.10. The Ground_Body shall have no joint associated with it because it is at the root of the
tree and does not need a parent. It can have multiple transformations denoting
mounting locations of interest in the site. Multiple mechanisms could reference the
same Ground_Body. The location of a mechanism relative to the Ground_Body is
defined in the joint that connects that body to the Ground_Body.

4.11. The Ground_Body will typically not be part of a particular mechanism model
description (i.e. the model input file (see Section 6)). However it can be referenced
by the model description. Usually the relationship or location between a
Mechanism_Model and the Ground_Body is defined during the model instantiation.
This is important for creating composite mechanisms from identical components. For
example, if you have a six-legged robot with identical legs, you only need a model for
one of the legs and you can then create the robot by changing the mounting point for
each leg.

CLARAty Document - Mechanism Model Requirements 3/28/2005

14

Figure 5: The components of a mechanical element body: ME_Body

Body1 object contains joint1
Body1 object contains fixed shape transform defining joint1 zero location
Body1 reference frame z-axis is aligned with joint1 rotation axis

Body0

Body1

Joint1

x1

T1 – fixed shape transform

x0

x0

Reference Frame

Reference Frame

Body
Reference
Frame

Sensor
Mount
Frame

Arm mount
Frame

Center of
mass

Camera
Mount Frame

Bodyi

B1

Jointi

Bounding
Shape Tree

B2 B3 B3 B4

B5

C1

B1

B2 B3

B4 C1 B5

Coarse
Shape

Finer Shape Finest Shape

Leaves of
tree
define
finest
shape

Relative to
body reference
frame

Bounding Shapes
Resolution Levels

Figure 6: Defining relationship between body and joint in a mechanism model

CLARAty Document - Mechanism Model Requirements 3/28/2005

15

4.12. There shall be a single tree of bodies that will capture the mechanism model and the
bounding shape information needed for collision detection. The mechanism model
API shall support the copying of bounding shape objects (e.g. trees) for collision
detection algorithms. Copies of bounding shapes can store transforms relative to an
internal frame (Figure 5).

4.13. An ME_Body shall have the following characteristics:
4.13.1. A single parent body. This simplifies the internal representation without

any loss of generality.
4.13.2. A single joint that connects a body to its parent (i.e. open loop chain).

The only exception is the Ground_Body (root of the tree), which has no
parent and hence no joint.

4.13.3. A fixed shape transformation that defines the joint location relative to its
parent’s reference frame. The relationships between bodies, joints and
their coordinate frames are illustrated in Figure 6. The joint location frame
shall have its z-axis aligned with the actuation axis. For revolute joints,
the angle of rotation is about the +z-axis following the right-hand rule. For
prismatic joints, the translation is along the z-axis. The x-axis of the joint
location is user defined. In most cases it is aligned with the body’s length.

4.13.4. The body reference frame is attached to the body and is coincident and
aligned with the fixed shape transform (joint) frame of the parent when the
joint is in zero position. The joint articulation transform represents the
offset from the zero configuration.

4.13.5. Any number of fixed (non-articulated) transformations defined relative to
the body reference frame (Figure 5).

4.13.6. A textual representation of the body name.
4.14. Bodies are assumed to be rigid

4.14.1. Software shall be extendable to support flexible body models.
4.15. An ME_Body may have the following optional characteristics:

4.15.1. Representation of bounding shape information for use by collision
detection algorithms:
4.15.1.1. A body contains a bounding shape tree (see Figure 5) that

describes containment relationships among the geometric
objects of a single body.

4.15.1.2. Algorithms shall specify and have access to different
resolutions of the bounding shape information. The finest
bounding shape resolution shall be at the leaves of the tree.

4.15.1.3. Bounding shapes in each body shall have their position
transformations relative to the body reference frame.

4.15.1.4. The corresponding ME_Body shall manage (update, delete)
bounding shapes.

4.15.1.5. We shall represent bounding shapes either as 2D or 3D
shapes (e.g. we represent terrain surfaces and walls by 2D
open meshes and manipulator links by 3D shapes such as
cylinders, boxes, spheres, and/or convex hulls). The
bounding shape API shall support both 2D and 3D
representations6.

4.15.2. Representation of geometric information for graphics display (future
implementation).

4.16. An ME_Joint shall have the following characteristics:

6 Bounding shape support for oct trees needs further investigation

CLARAty Document - Mechanism Model Requirements 3/28/2005

16

4.16.1. A joint must not store its articulation value or any joint state information
(such as joint mode which enumerates as: servoing, free, locked, etc.) –
i.e. a joint must be stateless. State information refers to state that will
change over time. Joint state is stored outside the tree. The articulation
value for a revolute joint is defined by the rotation about the +z-axis
relative to the fixed transform.

4.16.2. A function that accepts joint state as input and returns the relative
transformation between the current body reference frame and the
parent’s reference frame.

4.16.3. A field defining the joint type: active (actuated) or passive (non-actuated);
revolute, prismatic, ball, or planar (not to be confused with joint state).

4.16.4. Optional fields for specifying joint limits: min and max values

4.17. An ME_Joint may have the following optional characteristics:
4.17.1. Fields for defining joint constraints – i.e. constraints that couple a joint to

another (e.g. joint2 = a*joint1 + b) represented by the Joint_Constraint
software object.
4.17.1.1. Joints shall have built-in support for linear constraints.
4.17.1.2. Joints shall support extensions for non-linear constraints.

4.17.2. Fields for specifying joint stiffness with linear parameters [kx ky kz tx ty
tz].

CLARAty Document - Mechanism Model Requirements 3/28/2005

17

5. Coordinate Frames

5.1. A coordinate frame transformation represents the relative position and orientation of
one coordinate frame relative to another. A coordinate frame transformation will be
denoted by Transform.

5.2. A Transform shall have an API similar to the one currently implemented by HTrans
in CLARAty (homogeneous transform). The HTrans internally represents a
coordinate transformation as a 3x3 rotation matrix and a 1x3 translation vector.
However, its API supports matrix operations as if it were a 4 x 4 matrix without the
cost of additional computation.

The rotation portion of Transform shall be implemented using the Quaternion
rotation class. The translation portion of the Transform class shall be implemented
using the Point (3D point) class.

5.3. A Frame object shall be used to denote the physical location of a coordinate frame
relative to its body reference frame. The Frame object shall contain a Transform
object to specify its position and orientation relative to its body reference Frame, a
reference to its Body object, and a textual string to specify its name.

5.4. While body-referenced coordinate frames may be relative to intermediate coordinate
frames in the data input representation, the software shall internally compute and
store all these coordinate frames relative to the body reference (Figure 7).

Figure 7: Options for coordinate frame transformation input vs. internal storage representation

Hazard
Camera 1

Hazard
Camera 2

Stereohead
mount

Rover Reference Frame

Rover CG

Arm
mount

Rover Reference Frame

Rover
CG

Arm
mount

Stereohead
mount

Hazard
Camera 1

Hazard
Camera 2

Bodyi Bodyi

(a) Fixed coordinate frame transformation
can be inputted from model file (XML)

relative to one another

(b) All fixed frames computed and internally
 stored relative to body reference

CLARAty Document - Mechanism Model Requirements 3/28/2005

18

6. Model Data Input
6.1. Mechanism model parameters shall be specified in an eXtensible Markup Language

(XML) input file. Appendix A contains an example XML file and its corresponding
Document Type Definition (DTD).

6.2. CLARAty shall use SI units of meters for lengths, radians for angles, and kilogram for
mass in the input file. All internal values shall be stored in SI units. The
implementation shall easily be extended to support more general input units.

6.3. Each mechanism or appendage shall have a separate XML file. The application
program shall read multiple files and construct the system model. The complete
mechanism model may be assembled by reading in multiple XML files (e.g. arm
model, mast model, and mobility model are stored in separate files).

To simplify our initial implementation, we will require a certain order for reading input
files to attach appendages to proper mount points. For example, a rover body model
file will be read before an arm model file in order to attach the arm to the rover body.

6.4. The mechanism model file shall define necessary mount points by name to attach
appendages defined in separate model files.

6.5. Mechanism model shall, if necessary, override mounting information defined by the
model file and specify different mounting points during instantiation.

6.6. Mounting information for the base of appendages relative to the inertial frame should
not belong to the appendage (arm) model files. This information is specified when
attaching the appendage to the mechanism model. A given appendage may be
mounted differently on various systems. For example: a K9 arm may have a
different mounting location in the lab than on the K9 rover.

6.7. XML input file format shall support fixed coordinate frames relative to other fixed
frames in a rigid body (Figure 7)7. However, the software shall internally compute
and store all these coordinate frames relative to the body reference frame (see
requirement 5.1)

6.8. Software shall support serialization (marshalling / de-marshalling) of mechanism
model information for transmission/storage over media. Software shall use
CLARAty’s mechanism’s for marshalling/de-marshalling using Flexible Data
Marshalling (FDM) package in the data_io module for reading and writing objects
and data from and to a variety of formats. The following formats shall be supported:
6.8.1. Text tagged XML and Parse Block.
6.8.2. Binary tagged ACE CDR and untagged file IO.

6.9. Input parameter file shall support the required kinematic parameters.
6.10. Input parameter file shall support the optional parameters of:

6.10.1. Center of mass
6.10.2. Inertia matrix
6.10.3. Bounding shape

6.11. Input parameter file shall support different representations to specify the model (see
Appendix B):
6.11.1. Homogenous Transform (HT)
6.11.2. Zero Position (ZP)
6.11.3. Denavit-Hartenberg-Craig (DHC) (per J.J. Craig) for systems composed

of one DOF revolute joints

7 Similar to what the Frame Tree implementation currently supports.

CLARAty Document - Mechanism Model Requirements 3/28/2005

19

6.11.4. Denavit-Hartenberg-Paul (DHP) (per R. Paul) only for serial manipulators
composed of one DOF revolute joints. Note that DHP does not support
branches.

6.12. Model parameters are converted to an internal representation as follows:

6.12.1. For single degree-of-freedom joints, the z-axis shall be aligned with the
articulation axis.

6.12.2. For multiple degrees-of-freedom joints, the z-axis shall be aligned with at
least one joint axis.

6.12.3. The body reference frame shall be located at the center of rotation of the
revolute joints.

6.13. Software shall support saving or streaming the model information to a file in a format
that matches the input representations. General conversion between different model
representations might not be possible for some representations.

7. Kinematic Algorithms
7.1. Forward Kinematics: The Mechanism_Model object shall implement a function to

compute the transformation between any two Frames in the mechanism model for a
given set of corresponding articulation values.

7.2. Differential Forward Kinematics: The Mechanism_Model object shall implement a
function to compute the linear and angular velocities of any Frame in the kinematic
system with respect to another Frame for a given set of articulation values and
velocities.

7.3. Jacobian Matrix: The Mechanism_Model object shall implement a function to return
the differential relationship between articulation velocities and the linear and angular
velocities of a Frame (i.e. the Jacobian matrix) for a given set of corresponding
articulation values.

7.4. Inverse Kinematics: The Mechanism_Model object shall implement a function to
compute the set of articulation values that will simultaneously fully or partially
constrain one or more Frame(s) on the kinematic system to be located at other given
Frame location(s)

7.5. The forward kinematics of 7.1 shall be also accessible through a public member
function of ME_Body.

7.6. The differential forward kinematics of 7.2 shall be also accessible through a public
member function of ME_Body

7.7. The Jacobian Matrix of 7.3 shall be also accessible through a public member
function of ME_Body.

CLARAty Document - Mechanism Model Requirements 3/28/2005

20

8. Constraint Management
8.1. A Constraint_Manager software object shall be used to administer the generic

solution for inverse kinematics problems. The architecture will allow implementation
of customized solutions in classes derived from Mechanism_Model.

8.2. In solving inverse kinematics problems, the Constraint_Manager shall use
Cartesian_Constraint objects to specify desired relationships between pairs of
frames.

8.3. Two types of Cartesian_Constraint objects shall be implemented:
8.3.1. Contact_Constraint objects
8.3.2. End_Effector_Constraint objects

8.4. Contact_Constraint objects shall be used to specify the desired surface contact
between two frames.

8.5. End_Effector_Constraint objects shall be used to specify the desired absolute or
relative position of a Frame.

8.6. For the solution of a general set of Cartesian_Constraint objects that
simultaneously apply to the kinematic system, an iterative numerical approach shall
be used.

8.7. The Constraint_Manager shall setup the Cartesian_Constraint vectors to solve
for, and then use a Constraint_Solver to determine the configuration of the
kinematic system that best solves for the set of Cartesian_Constraints.

8.8. Cartesian_Constraint inputs may be entered from a file, a trajectory generator or
serialized data input through a communication stream.

XML_File_IO

Mechanism_Model

1

1, …n

1, … n

1

0, …n

Bounding_Shape

1

Tree<ME Body>

ME_Body

Contact_Constraint ME_Joint

Tree<Bounding_Shape>

Constraint_Manager

End_Effector_Constraint

1 1

1, … n

SphereBox

1, … n

1

Point

Quaternion

1

Joint_Constraint

Transform

1, … n

Main mechanism classes
Support classes for mechanism model
Main kinematic solver classes
Classes from the math package

Cartesian_Constraint

Frame

Constraint_Solver

CLARAty Document - Mechanism Model Requirements 3/28/2005

21

8.9. In the initial implementation, Constraint_Solver may use a simple numerical
approach, for example a Newton-Raphson iteration, to solve for the set of
constraints. However, the Constraint_Solver shall be extended to use other
solvers for the constraints.

8.10. The implementation shall allow the user to easily replace this generic constraint
solution approach with customized solutions for particular inverse kinematic
problems.

9. Performance
These performance requirements are intended to be representative (but not exhaustive) of the
acceptable overhead for the mechanism model classes. These timing requirements are based
on a 1GHz x86 class processor with 128 MB of RAM

9.1. Retrieving kinematic and dynamic parameters from the mechanism model shall take
less than 250 usec (TBD) per node for a 10 node tree topology.

9.2. Computing forward kinematics shall take less than 400 usec (TBD) for a 10 node
serial chain

9.3. Computing generic inverse kinematics shall take less than 15 msec (TBD) for a 5
node serial chain.

10. Future Additions

 Add capability to specify collision matrix that lists pairs of objects that can potentially collide
in an XML file

CLARAty Document - Mechanism Model Requirements 3/28/2005

22

Part II: Interfacing Mechanism Model to CLARAty Abstractions

The second part of this document describes how this mechanism model will interface with the
CLARAty locomotion and manipulation abstracionts.

11. Interfacing with Control Abstractions

The class hierarchy for the Mechanism_Model software package is illustrated in
. The Mechanism_Model classes shall be used either as a stand-alone package for kinematic
analysis or as part of the control software for the robotic system.

11.1. Mechanism_Model may be used directly by the robot control system or through
interface classes that present simpler and restricted interfaces for common types of
mechanisms. For example, the interface class for manipulators shall be the
Manipulator_Model class. Similarly, for wheeled mobile robots, it shall be
Wheeled_Locomotor_Model and, for walking mobile robots, it shall be
Legged_Locomotor_Model. Figure 8 shows an example using the manipulator
classes to illustrate the interface of the mechanism model to the control classes
(generic physical components).

11.2. The interface classes and their corresponding control classes shall enable the
mechanical sub-systems to be controlled independently. This is the typical mode
used for robotic operations. For example, a rover with its mounted arm can be
treated as two independent control systems by utilizing the Manipulator_Model and
Wheeled_Locomotor_Model interface classes for the arm and the rover respectively.
Alternatively, one can use the Mechanism_Model instead to simultaneously
coordinate the arm with the rover motions.

Manipulator_Model

Device

Mechanism_Model

R8_Arm_Model

Manipulator

R8_Arm

Device Device_Group

Motor_Group Motor

Trajectory
Generator

R8_Motor

Generic classes

Robot Adaptation

ME Body

ME Joint

Figure 8: Example of using Mechanism_Model with Manipulator control classes. Similar
structures will be used for Wheel_Locomotor and Legged_Locomotor classes (substitute

manipulator with locomotor)Use of Mechan

CLARAty Document - Mechanism Model Requirements 3/28/2005

23

11.3. Adaptations of Manipulator_Model, Wheeled_Locomotor_Model and
Legged_Locomotor_Model can override generic kinematics algorithm
implementations with specialized algorithms whenever necessary.

11.4. Specialized kinematic algorithm implementations shall use parameter information
from Mechanism_Model classes.

11.5. Manipulator_Model, Wheeled_Locomotor_Model and Legged_Locomotor_Model
classes shall support serialization of their model information. This will support both
writing these models to file storage and retrieving and instantiating the models from
their respective files(see Section 6).

12. Model Classes for Manipulators and Locomotors
This section addresses models for generic manipulators, wheeled locomotors, and legged
locomotors. We will use the Manipulator_Model class as an example. Figure 8 illustrates the
relationships among Manipulator_Model interface class, Mechanism_Model class, and
Manipulator control classes. The same applies for wheeled, legged and hybrid locomotors.

12.1. Manipulator_Model shall reference the Mechanism_Model class for accessing the
kinematic model data on the manipulator.

12.2. Adaptations of the Manipulator_Model class may define specialized
implementations (e.g., closed-form solution) of forward, inverse, and differential
kinematics to override, as necessary, generic solutions available from the
Mechanism_Model. Adaptations of the Wheeled_Locomotor_Model class shall
define specialized implementations of flat-ground open-loop driving and slope
differential driving kinematics algorithms. Adaptations of the
Legged_Locomotor_Model class shall define specialized implementations of flat-
ground open-loop walking and slope differential walking kinematics algorithms.

12.3. Manipulator_Model subclasses shall be concrete classes. Examples of such
classes include R8_Arm_Model and FD_Mast_Model.

13. Control Classes for Manipulators and Locomotors
This section applies to the generic manipulator, wheeled locomotor, and legged locomotor
classes. The requirements below are only intended to describe the relationship between the
manipulator/locomotor classes and their corresponding model classes. The requirements below
use the Manipulator class as an example. Figure 8 illustrates the Manipulator and the
associated control classes. The same applies for wheeled, legged and hybrid locomotors.

13.1. Manipulator class shall inherit from generic Device class and contain the following:
 Manipulator_Model
 Motor_Group

13.2. Motor_Group class shall define the correspondence between manipulator joints and
actual motors.

13.3. Manipulator class shall bind the ME_Joint objects to the individual motors
13.4. Manipulator class shall have APIs that support various motion control modes for:

13.4.1. Individual joint/wheel control
13.4.2. Coordinated joint/wheel control

CLARAty Document - Mechanism Model Requirements 3/28/2005

24

13.4.3. Following a prescribed path or trajectory (e.g. straight line motion of the
end effector of a manipulator)

13.4.4. Gravity compensation for manipulators
13.4.5. Sensor-based control such as force control, compliance control, visual

servoing, and so on.
13.5. Motor_Group may use a Coordinator object for closed loop coordination of

multiple joints. The Manipulator class shall generate set points using generic or
specialized kinematic algorithms and feed them to the Coordinator through the
Motor_Group API.

13.6. Manipulator subclasses shall be concrete classes. Examples include R8_Arm and
FD_Mast.

14. Examples of Model Instantiation
An example to create a mechanism model of a walking robot shall be as follows

To create an arm that uses a yaw-pitch-pitch-pitch-yaw (YPPPY) configuration, one can create
a YPPPY kinematic model which is a specialization of Mechanism_Model.

Manipulator_Model

YPPPY_Arm_Model

Manipulator

R8_Arm

Figure 9: Inheriting specific models from Manipulator_Model

// Create a mechanism model of the rover body
Mechanism_Model rover_model(“body_model.xml”);

// Attach a leg to the “leg1_mnt” frame defined in “body_model.xml”
// using the leg model in “leg_model.xml”
rover_model.attach((“leg_model.xml”, “leg1_mnt”);

// Attach a leg to the “leg2_mnt” frame defined in “body_model.xml”
// using the leg model in “leg_model.xml”
rover_model.attach((“leg_model.xml”,“leg2_mnt”);
rover model.save(“entire model.xml”);

// Create a mechanism model of the K-9 arm
YPPPY_Arm_Model ypppy_model(“k9_arm_model.xml”);

// Create a R7_Arm manipulator with a YPPPY model
R7_Arm r7_arm(ypppy_model);

CLARAty Document - Mechanism Model Requirements 3/28/2005

25

Appendix A: Document Definition Example
This appendix contains two examples of the mechanism model XML files, and their
corresponding Document Type Definition for mechanism model. Below is the simple example:

<?xml version="1.0" encoding="US-ASCII" ?>

 <!DOCTYPE Mechanism_Model SYSTEM “mechanism_model.dtd”>
- <!--

 *===
*= /-/ CLARAty /-/ =

 *===
* @file simple_sample1.xml
*
 * An example of the use of the DTD
*
* @author: Diaz-Calderon
* @date: June 15, 2004
*
* Software Use Notice
* --------------------
* http://claraty.jpl.nasa.gov/sw_use_notice.html or
* ../share/sw_use_notice.txt
*
* (C) 2004, Jet Propulsion Laboratory, California Institute of Technology
*
* $Revision:$
*---

 -->
- <Mechanism_Model name="simple_two_link" version="1.0">

- <ME_Body name="link1">
- <ME_Joint name="joint1" type="revolute" actuated="true" offset="0"></ME_Joint>
- <Frame name="ref1" type="reference">
 <Transform>
 <Position x="2.0" y="0" z="0" />

<Rotation type="Euler_ZYZ" angle="M_PI/2” angle="0" angle="0" />
 </Transform>
</Frame>

 </ME_Body>
- <ME_Body name="link2" parent="link1">
- <ME_Joint name="joint2" type="revolute" actuated="true" offset="0"></ME_Joint>
- <Frame name="ref2" type="reference">

<Transform>
 <Position x="10" y="0" z="0" />

<Rotation type="Euler_XYZ" angle="M_PI/2” angle="M_PI" angle="0" />
</Transform>

 </Frame>
</ME_Body>
</Mechanism_Model>
- <!--
 EOF simple_sample1.xml
 -->

CLARAty Document - Mechanism Model Requirements 3/28/2005

26

Below is a second more complete sample model for a three link manipulator.

<?xml version="1.0" encoding="US-ASCII" ?>

 <!DOCTYPE Mechanism_Model (SYSTEM “mechanism_model.dtd”>
- <!--

 *===
*= /-/ CLARAty /-/ =

 *===
* @file sample1.xml
*
 * An example of the use of the DTD
*
* @author: Diaz-Calderon
* @date: June 15, 2004
*
* Software Use Notice
* --------------------
* http://claraty.jpl.nasa.gov/sw_use_notice.html or
* ../share/sw_use_notice.txt
*
* (C) 2004, Jet Propulsion Laboratory, California Institute of Technology
*
* $Revision:$
*---

 -->
- <Mechanism_Model name="two_link" version="1.0">
- <ME_Body name="link1">
- <ME_Joint name="joint1" home="1.0" type="revolute" actuated="true" offset="0">

<Joint_Limits min="-M_PI" max="M_PI" vmax="0.25" torque_min="0"
torque_max="0" />

 <Joint_Stiffness kx="0.1" ky="0.2" kz="0.3" />
</ME_Joint>

- <Frame name="ref1" type="reference">
<Transform>

 <Position x="0" y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
</Frame>

- <Mass_Properties mass="0.25">
- <CM>

<Transform>
 <Position x="1" y="1" z="1" />

 <Quaternion qi="0" qj="0" qk="0" qs="1" />
</Transform>

 </CM>
 <Inertia xx="0" yy="0" zz="0" />

</Mass_Properties>
- <Bounding_Shape>
- <Obj_Params name="obj20" type="box" link="IDD_COL_EL_JOINT"

is_container="true" level="1" is_aligned="no" ignore_collisions="false" tol="-
1.0">

CLARAty Document - Mechanism Model Requirements 3/28/2005

27

 <Transform>
 <Position x="0" y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 <Dimension dim-x="0" dim-y="0" dim-z="0" />
 </Obj_Params>

- <Obj_Params name="obj21" type="box" parent="obj20"
link="IDD_COL_LINK_AUTO" is_container="none" level="2" is_aligned="no"
ignore_collisions="false" tol="-1.0">

<Transform>
 <Position x="0" y="0" z="0" />

 <Quaternion qi="0" qj="0" qk="0" qs="1" />
</Transform>
<Dimension dim-x="0" dim-y="0" dim-z="0" />

 </Obj_Params>
- <Obj_Params name="obj22" type="box" parent="obj20"

link="IDD_COL_LINK_AUTO" is_container="none" level="1" is_aligned="no"
ignore_collisions="false" tol="-1.0">

<Transform>
 <Position x="0" y="0" z="0" />

 <Quaternion qi="0" qj="0" qk="0" qs="1" />
</Transform>
<Dimension dim-x="0" dim-y="0" dim-z="0" />

 </Obj_Params>
 </Bounding_Shape>

 <Display_Graphics path="graphics_file.vrml" />
</ME_Body>

- <ME_Body name="link3">
- <ME_Joint name="joint3" type="revolute" actuated="true" offset="0" home="0">

<Joint_Limits min="-M_PI" max="M_PI" vmax="1.0" torque_min="0"
torque_max="0" />

 </ME_Joint>
- <Frame name="ref3" type="local">

<Transform>
 <Position x="1" z="10" y="0" />

 <Quaternion qi="0" qj="0" qk="0" qs="1" />
</Transform>

 </Frame>
- <Mass_Properties>
- <CM>

<Transform>
<Position x="0" y="0" z="0" />

 <Quaternion qi="0" qj="0" qk="0" qs="1" />
</Transform>

 </CM>
 <Inertia xx="1" yy="2" zz="3" />
 </Mass_Properties>
</ME_Body>

- <ME_Body name="link2" parent="link1">
- <ME_Joint name="joint2" type="revolute" actuated="false" offset="M_PI_2">

CLARAty Document - Mechanism Model Requirements 3/28/2005

28

 <Joint_Limits min="-M_PI" max="M_PI" vmax="1.0" torque_min="-1.0"
torque_max="1.0" />

 <Joint_Stiffness kx="0.1" ky="0.2" kz="0.3" />
 <Joint_Constraint expr="2*joint1" />
 </ME_Joint>

- <Frame name="ref2" type="reference">
<Transform>

 <Position x="10" y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 </Frame>

- <Frame name="sens1" type="local">
<Transform>

 <Position x="4" y="10" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 </Frame>

- <Frame name="force1" type="local">
<Transform>

 <Position x="3" y="2" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 </Frame>

- <Mass_Properties mass="0.25">
- <CM>

<Transform>
 <Position x="1" y="1" z="1" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 </CM>

 <Inertia xx="0" yy="0" zz="0" />
 </Mass_Properties>

- <Bounding_Shape>
- <Obj_Params name="obj30" type="box" link="IDD_COL_EL_JOINT"

is_container="true" level="1" is_aligned="no" tol="-1.0">
<Transform>

 <Position x="0" y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0" qs="1" />

</Transform>
 <Dimension dim-x="0" dim-y="0" dim-z="0" />
 </Obj_Params>
 </Bounding_Shape>

 <Display_Graphics path="graphics_file.vrml" />
</ME_Body>
</Mechanism_Model>
- <!--
 EOF sample1.xml
 -->

CLARAty Document - Mechanism Model Requirements 3/28/2005

29

 <?xml version="1.0" encoding="US-ASCII"?>
<!--
*===
*= /-/ CLARAty /-/ =
*===
* @file sample1.xml
*
* An example of the use of the DTD
*
* Target OS: Generic (VxWorks/UNIX/Linux)
*
* Designed by: Diaz-Calderon
* @author: Diaz-Calderon
* @date: June 15, 2004
*
* Software Use Notice
* --------------------
* http://claraty.jpl.nasa.gov/sw_use_notice.html or
* ../share/sw_use_notice.txt
*
* (C) 2004, Jet Propulsion Laboratory, California Institute of Technology
*
* $Revision:$
*
* Modification History
* --------------------
* 002,18jun04,adc Implemented changes per meeting with Issa
* 001,15jun04,adc updated to conform with the requirements document
* 000,27apr04,adc original writting of the dtd
*---
-->

<!---------------- M E C H A N I S M _ M O D E L ------------------------>
<!ELEMENT Mechanism_Model ((ME_Body+) |
 (Block_DH, Block_Joint))>
<!ATTLIST Mechanism_Model
 name ID #REQUIRED
 version CDATA #REQUIRED>

<!---------------------- M E _ B O D Y ---------------------------------->
<!-- me-body requires at least one frame that describes the fixed -->
<!-- transform from parent reference frame to the body reference -->
<!-- frame. The required node will define the reference frame of the -->
<!-- body relative to the reference frame of the parent; i.e., the -->
<!-- body-to-parent transform. All other nodes (including mount nodes -->
<!-- must be defined relative to the body reference frame. -->
<!ELEMENT ME_Body (ME_Joint,
 Frame+,
 Mass_Properties?,
 Bounding_Shape?,
 Display_Graphics?)>
<!ATTLIST ME_Body
 name ID #REQUIRED
 parent IDREF #IMPLIED>

<!---------------------- M E _ J O I N T ------------------------------->
<!ELEMENT ME_Joint (Joint_Limits?, Joint_Stiffness?, Joint_Constraint?)>
<!ATTLIST ME_Joint
 name ID #REQUIRED
 type (revolute | prismatic) "revolute"

CLARAty Document - Mechanism Model Requirements 3/28/2005

30

 actuated (true | false) "true" offset NMTOKEN "0"
 home NMTOKEN "0">

<!--------------------- J O I N T _ L I M I T S --------------------->
<!ELEMENT Joint_Limits EMPTY>
<!ATTLIST Joint_Limits
 min NMTOKEN "-M_PI"
 max NMTOKEN "M_PI"
 vmax NMTOKEN "1.0"
 torque_min NMTOKEN "0"
 torque_max NMTOKEN "0">

<!-------------------- J O I N T _ S T I F F N E S S ---------------->
<!ELEMENT Joint_Stiffness EMPTY>
<!ATTLIST Joint_Stiffness
 kx NMTOKEN #REQUIRED
 ky NMTOKEN #REQUIRED
 kz NMTOKEN #REQUIRED>

<!------------------- J O I N T _ C O N S T R A I N T -------------->
<!ELEMENT Joint_Constraint EMPTY>
<!ATTLIST Joint_Constraint
 expr CDATA #REQUIRED>

<!--------------------- C E N T E R O F M A S S ------------------>
<!-- coordinates of the center of mass relative to the body reference -->
<!-- frame. The orientation of the principal axes relative to the -->
<!-- reference frame is given by the rotation matrix in the -->
<!-- transform. -->
<!ELEMENT CM Transform>

<!------------------------ I N E R T I A -------------------------->
<!ELEMENT Inertia EMPTY>

<!-- Principal moments of inertia of the me-body. This assumes that -->
<!-- the frame located at the center of mass represent the principal -->
<!-- axes of the body. -->
<!ATTLIST Inertia
 xx NMTOKEN #REQUIRED
 yy NMTOKEN #REQUIRED
 zz NMTOKEN #REQUIRED>

<!------------------- M A S S - P R O P E R T I E S ---------------->
<!ELEMENT Mass_Properties (CM, Inertia)>

<!-- If the values for rho and volume are given, mass it is a derived -->
<!-- parameter mass = rho*volume -->
<!ATTLIST Mass_Properties
 rho NMTOKEN #IMPLIED
 volume NMTOKEN #IMPLIED
 mass NMTOKEN #IMPLIED
>

<!-------------------- B O U N D I N G _ S H A P E --------------->
<!ELEMENT Bounding_Shape (Obj_Params)+>

<!ELEMENT Obj_Params (Transform, Dimension)>

CLARAty Document - Mechanism Model Requirements 3/28/2005

31

 <!ATTLIST Obj_Params name ID #REQUIRED
 parent IDREF #IMPLIED
 type (box | cyl | no_shape) #REQUIRED
 is_container (true | false | none) #REQUIRED
 level (1 | 2 | 3) #REQUIRED
 link NMTOKEN #REQUIRED
 is_aligned (yes | no) #REQUIRED
 ignore_collisions CDATA #REQUIRED
 tol NMTOKEN #REQUIRED>

<!--------------- D I S P L A Y _ G R A P H I C S -------------------->
<!ELEMENT Display_Graphics EMPTY>
<!ATTLIST Display_Graphics
path CDATA #REQUIRED>

<!------------- P O S I T I O N S & V O L U M E S ----------------->

<!----------------------- P O S I T I O N ---------------------->
<!ELEMENT Position EMPTY>
<!ATTLIST Position
 x NMTOKEN "0"
 y NMTOKEN "0"
z NMTOKEN "0">

<!----------------------- D I M E N S I O N -------------------->
<!ELEMENT Dimension EMPTY>
<!ATTLIST Dimension
 dim-x NMTOKEN "0"
 dim-y NMTOKEN "0"
 dim-z NMTOKEN "0">

<!--------------- R O T A T I O N S & F R A M E S ----------------->

<!------------------- X-A X I S R O T A T I O N -------------------->
<!ELEMENT RX EMPTY>
<!ATTLIST RX
 angle NMTOKEN #REQUIRED>

<!------------------- Y-A X I S R O T A T I O N -------------------->
<!ELEMENT RY EMPTY>
<!ATTLIST RY
 angle NMTOKEN #REQUIRED>

<!------------------- Z-A X I S R O T A T I O N -------------------->
<!ELEMENT RZ EMPTY>
<!ATTLIST RZ
 angle NMTOKEN #REQUIRED>

<!----------------------- 3D R O T A T I O N ------------------------>
<!ELEMENT Rotation EMPTY>
<!ATTLIST Rotation
 type (EULER_XYZ | EULER_ZYX | EULER_ZYZ)
 angle NMTOKEN #REQUIRED
 angle NMTOKEN #REQUIRED
 angle NMTOKEN #REQUIRED>

CLARAty Document - Mechanism Model Requirements 3/28/2005

32

 <!---------------------- Q U A T E R N I O N --------------------> <!ELEMENT Quaternion EMPTY>
<!ATTLIST Quaternion
 qi NMTOKEN "0"
 qj NMTOKEN "0"
 qk NMTOKEN "0"
 qs NMTOKEN "1">

<!---------------------- T R A N S F O R M -------------------->
<!—- Transform that uses a position and either a quaternion
<!—- or a rotation matrix for its orientation -->
<!ELEMENT Transform (Position, (Rotation | Quaternion)) >

<!---------------------- D H _ P A R A M E T E R ----------------->
<!—- Denahvit-Hartenberg parameters which can use either Craig’s or -->
<!—- Paul’s convention -->
<!ELEMENT DH_Parameter EMPTY>
<!ATTLIST DH_Parameter
 type (DH_Craig | DH_Paul) #REQUIRED
 name ID #REQUIRED
 length NMTOKEN #REQUIRED
 twist NMTOKEN #REQUIRED
 offset NMTOKEN "0"
 angle NMTOKEN "0">

<!--------------------------- F R A M E ---------------------->
<!-- a Frame represents a ref-frame, actuator-frame and -->
<!-- sensor-frame. There can only be one and only one ref-frame for a -->
<!-- given body. It is an error to define more than one reference -->
<!-- frames in a body. -->
<!ELEMENT Frame (Transform | DH_Parameter)>
<!ATTLIST Frame
 name ID #REQUIRED
 type (reference | local) "local">

<!--------------------- T A B L E I N P U T ------------------->

<!------------------------ B L O C K - D H --------------------->
<!ELEMENT Block_DH (DH_Parameter+)>

<!--------------------- B L O C K - J O I N T ------------------>
<!ELEMENT Block_Joint (ME_Joint+)>

<!-- EOF mechanism_model.dtd -->

CLARAty Document - Mechanism Model Requirements 3/28/2005

33

Appendix B: Model Input Representations
This appendix summarizes three input respresentations: (a) Craig’s D-H parameters, (b) Paul’s
D-H parameters, and (c) Zero Position parameters.

x0

y0

z0

x1

y1 z1

x2

z2
y2 x3

z3
y3

x4

z4

y4

Craig’s definition of D-H
parameters
T1 = twist αi-1 about x0 axis
T2 = length ai-1 along x1 axis
T3 = offset di along z2 axis
T4 = rotate θi about z3 axis

Ti

i-1 =

ai-1

di

αi-1

αi-1

θi

θi

 cθi - sθi 0 ai-1

sθi cαi-1 cθi cαi-1 - sαi-1 - di sαi-1

sθi sαi-1 cθi sαi-1 cαi di cαi-1
 0 0 0 1

Jointi

x0

y0

z0

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

Paul’s definition of D-H parameters
T1 = rotate θi about z0 axis
T2 = offset di along z1 axis
T3 = length ai along x2 axis
T4 = twist αi about x3 axis

Ti

i+1 =

αi

αi

θi-1
di

ai

cθi - sθi cαi sθi sαi ai cθi

sθi sθi cαi - sθi sαi ai sθi

 0 sαi cαi di
 0 0 0 1

Jointi Jointi-1 Jointi+1

θi-1

Zero Position Parameters (Darts Style)
In the initial (zero) position, the orientations of all
coordinates frames are aligned

Body name = Linki
Parent body name = Linki-1
Joint type = rotational

Body to joint = xb, yb, zb (default = 0 0 0)
Parent body to joint = xp, yp, zp (default = 0 0 0)
Joint axis = ax, ay, az

Jointi
z1

Linki-1 Linki Body
to Joint

Parent
Body
to Joint

